Neuronal Morphogenesis: Worms Get an EFF in Dendritic Arborization
نویسندگان
چکیده
The development of neuronal dendritic trees involves positive and negative control of growth and branching, as well as modulation of the spacing and orientation of branches. A new study reveals the importance of a membrane fusogen in the dendrite arborization of a pair of highly-branched worm sensory neurons.
منابع مشابه
The Coiled-Coil Protein Shrub Controls Neuronal Morphogenesis in Drosophila
The diversity of neuronal cells, especially in the size and shape of their dendritic and axonal arborizations, is a striking feature of the mature nervous system. Dendritic branching is a complex process, and the underlying signaling mechanisms remain to be further defined at the mechanistic level. Here we report the identification of shrub mutations that increased dendritic branching. Single-c...
متن کاملnanos and pumilio Are Essential for Dendrite Morphogenesis in Drosophila Peripheral Neurons
Much attention has focused on dendritic translational regulation of neuronal signaling and plasticity. For example, long-term memory in adult Drosophila requires Pumilio (Pum), an RNA binding protein that interacts with the RNA binding protein Nanos (Nos) to form a localized translation repression complex essential for anterior-posterior body patterning in early embryogenesis. Whether dendrite ...
متن کاملSarm1, a negative regulator of innate immunity, interacts with syndecan-2 and regulates neuronal morphology
Dendritic arborization is a critical neuronal differentiation process. Here, we demonstrate that syndecan-2 (Sdc2), a synaptic heparan sulfate proteoglycan that triggers dendritic filopodia and spine formation, regulates dendritic arborization in cultured hippocampal neurons. This process is controlled by sterile α and TIR motif-containing 1 protein (Sarm1), a negative regulator of Toll-like re...
متن کاملMolecular mechanisms of dendrite morphogenesis
Dendrites are key integrators of synaptic information in neurons and play vital roles in neuronal plasticity. Hence, it is necessary that dendrite arborization is precisely controlled and coordinated with synaptic activity to ensure appropriate functional neural network integrity. In the past several years, it has become increasingly clear that several cell intrinsic and extrinsic mechanisms co...
متن کاملThe RhoGEF Trio Functions in Sculpting Class Specific Dendrite Morphogenesis in Drosophila Sensory Neurons
BACKGROUND As the primary sites of synaptic or sensory input in the nervous system, dendrites play an essential role in processing neuronal and sensory information. Moreover, the specification of class specific dendrite arborization is critically important in establishing neural connectivity and the formation of functional networks. Cytoskeletal modulation provides a key mechanism for establish...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Current Biology
دوره 20 شماره
صفحات -
تاریخ انتشار 2010